博客
关于我
暑期 tensorflow+CNN+mnist
阅读量:168 次
发布时间:2019-02-27

本文共 451 字,大约阅读时间需要 1 分钟。

暑期 tensorflow+CNN+mnist

  • kaggle官网的mnist数据集,格式为csv。
  • 图像像素点数据归一化,减少浮动差异。
  • 根据预先计算好的数据指标,进行设计。
  • 标签进行独热编码。
  • 划分数据集为:train、val。
  • 初始化卷积层和全连接层的权重、偏置等参数。
  • 设计代价函数,进行优化。
  • 训练、验证。

关于交叉熵函数

  • 参考网址:

  • 有很多不同的度量方法在数据上训练评判。一般的方法是均方或欧氏距离。当然这里也有对神经网络的其它方法,如交叉熵代价函数。该算法计算公式如下图:

cost

  • 在公式中,y是预测生成的概率分布,y’是训练数据集中标注的真实分布。如果不探讨公式背后的原理的话,我们仅需了解当两个分布完全一致时,此时函数取得最小值。

代码的解说有以下参考博客

代码的一个小疑问

  • 下图代码里的的if(VALIDATION_SIZE) : else:条件是什么意思什么用意呢?

code

  • 学习交流群里大神认为可能是:数据集中的validation集如果分配了数据,则执行两种精确度的计算;否则只打印训练精确度
你可能感兴趣的文章
Netty原理分析及实战(四)-客户端与服务端双向通信
查看>>
Netty发送JSON格式字符串数据
查看>>
Netty和Tomcat的区别已经性能对比
查看>>
Netty基础—1.网络编程基础二
查看>>
Netty基础—3.基础网络协议二
查看>>
Netty基础—7.Netty实现消息推送服务一
查看>>
Netty基础—8.Netty实现私有协议栈二
查看>>
Netty多线程 和 Redis6 多线程对比
查看>>
Netty学习总结(2)——Netty的高性能架构之道
查看>>
Netty学习总结(3)——Netty百万级推送服务
查看>>
Netty学习总结(5)——Netty之TCP粘包/拆包问题的解决之道
查看>>
Netty学习总结(6)——Netty使用注意事项
查看>>
Netty客户端断线重连实现及问题思考
查看>>
Netty工作笔记0001---Netty介绍
查看>>
Netty工作笔记0003---IO模型-BIO-Java原生IO
查看>>
Netty工作笔记0006---NIO的Buffer说明
查看>>
Netty工作笔记0007---NIO的三大核心组件关系
查看>>
Netty工作笔记0008---NIO的Buffer的机制及子类
查看>>
Netty工作笔记0009---Channel基本介绍
查看>>
Netty工作笔记0011---Channel应用案例2
查看>>